INTEGRITY SOLUTIONS SERVICES PIPELINE INTEGRITY ASSESSMENT

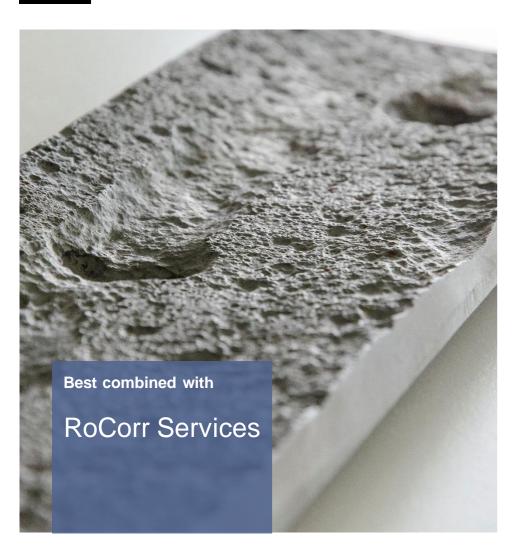
DoMat

DaCarr

range of inspection technologies, each of the services is accompanied by the appropriate assessments.

Key advantages:

 Combined inspection system and integrity assessment expertise minimizes uncertainty ensuring safe, accurate assessments and recommendations


To maximize the value of the broad

- Results scheduled with standard inspection reporting
- Access to signal data and expert evaluation minimizes uncertainty.

									RoMat			RoCD					RoCorr						RoGeo			
Long Seam Categorization	MAOP Validation / Pipe Grade Determination	Bending Strain / Pipe Movement / Geohazard / Depth of Cover Assessment	Crack Growth Assessment	Dent Strain / Stress / Fatigue Life Assessment	Fitness for Purpose Assessment	Corrosion Growth Assessment		RoMat DMG	RoMat MTS	RoMat PGS		R _O CD UT-A	R ₀ CD UT-C	RoCD EMAT-A	RoCD EMAT-C	RoCorr UTWM Ultra	RoCorr UTWM	RoCorr IEC	RoCorr MFL-C	RoCorr MFL-A Ultra	RoCorr MFL-A		RoGeo XYZ Mapping	RoGeo MD	RoGeo XT	
)eterr	nt / sessr						0		0						•		•								
	ninati	nent																								
	on on																	0								
								0		0						0	0	•	0	0	0					

CORROSION GROWTH ASSESSMENTS EXPOSING ACTIVE THREATS

Corrosion Growth Assessments (CGA) identify and quantify corrosion activity that has occurred and provide critical input into fitness-for-service (FFS) assessments.

Our Corrosion Growth Assessments provide a detailed view of how corrosion has developed over time. **This involves:**

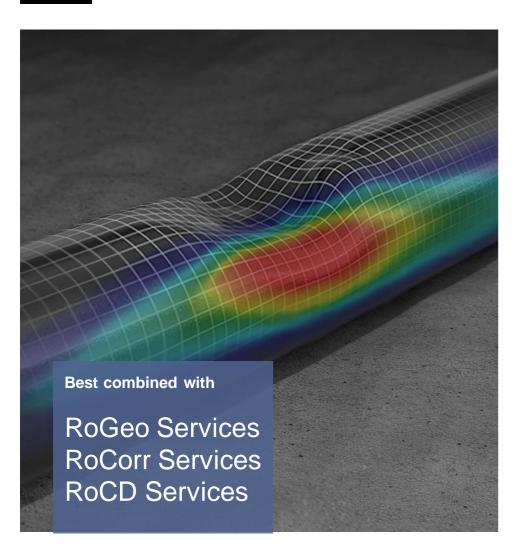
- Feature matching
- · Identification of corrosion activity
- Matching of non-corrosion features (e.g. dents)
- Raw signal data comparison (incl. multi-vendor)
- Support definition of multi-year repair + maintenance plans (combination with FFS)
- Assessment of corrosion rate credibility

- CGA with Box Matching
- CGA^{pro} with Box Matching/Signal Comparison
- CGA^{pro} with Automated Signal Correlation and Normalization (AutoSCAN)

BENDING STRAIN AND PIPE MOVEMENT IDENTIFY, EVALUATE AND CONTROL GEOHAZARDS

Geohazards are a major threat to pipelines:

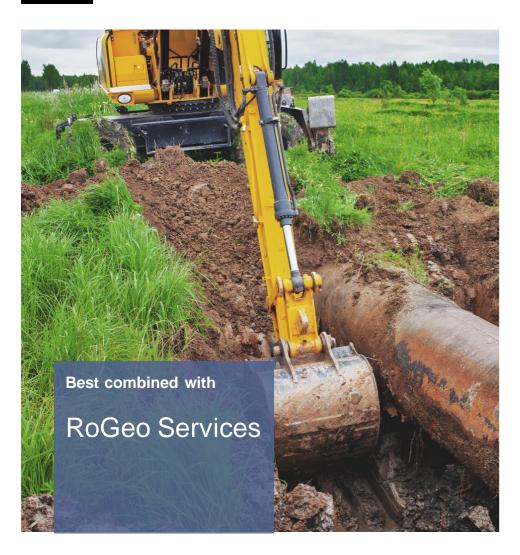
• They are hard to identify, difficult to predict, can cause failure and are extremely challenging to control.


Our Geohazard Assessments involve:

- Combined ILI technologies to collect bending, deformation and weld quality data.
- GIS tools to process, manage and align relevant data.
- Expert consultancy in geotechnics, weld fracture, strain capacity, stress analysis and related sciences.

- L1 Analysis Identify and quantify locations of bending and changes in bending strain (movement).
- L2 Assessment Interacting threats, critical limits, probable causes, recommended actions.
- L3 Site Specific Survey, FEA, modelling future movement, management and rehabilitation plans.

DENT ASSESSMENTSSTRESS-BASED ASSESSMENT OF DENTING AND BUCKLING


Deformations in pipelines cause stress concentrations and may initiate failure by fatigue. These pose a major threat to pipeline integrity.

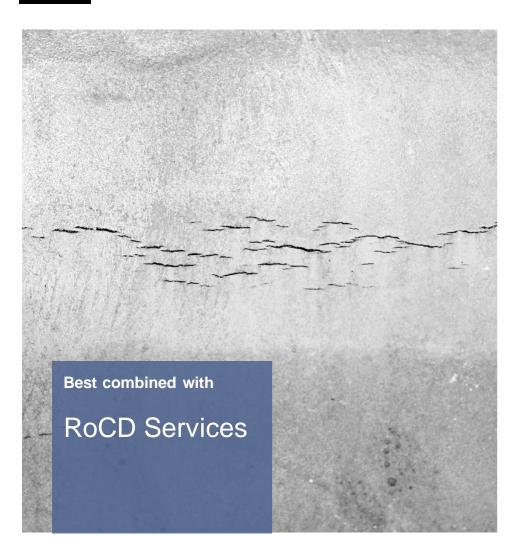
Our Dent Assessments involve:

- Screening fatigue assessment in accordance with API 579, PDAM, or EPRG guidance
- Strain assessment in accordance with ASME B31.8
- Finite element analysis (FEA) providing stressconcentration factors or stress range
- Remaining life assessment (RLA)
- Assessment of dents with metal loss or associated with welds
- Repair recommendations

DEPTH-OF-COVER ASSESSMENTSDON'T EXPOSE YOUR ASSETS

Depth of cover can decrease over time due to external influences:

- Natural erosion by water, wind and gravity
- Natural shrinkage and erosion as a result of human activity


A reduced depth of cover increases the probability of third party damage.

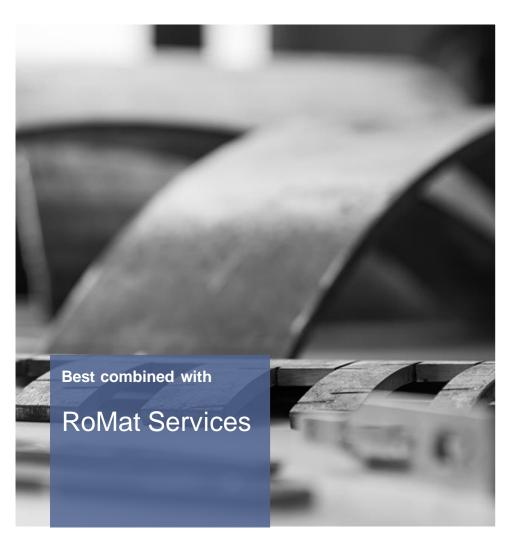
Our Depth-of-Cover Assessments involve:

- An elevation model derived from satellite imagery, aerial photography, drones and radar data/3D scanning data (LiDAR)
- In-line inspection for up-to-date XYZ data
- Evaluation and change identification of depth-of-cover at every girth weld along the pipeline

CRACK ASSESSMENTS TAKE CONTROL OF CRACKS

Cracking can take many forms. Distinguishing between these is a challenge, and inspection alone can only offer a partial solution.

Our Crack Assessments involve:


- Understanding the cause of cracking
- Engineering critical assessment (ECA) approach to determine tolerable defect dimensions
- Compliance with API 579/ASME FFS-1 and British Standard 7910 (2013)
- Remaining life (fatigue analysis and/or SCC growth analysis)

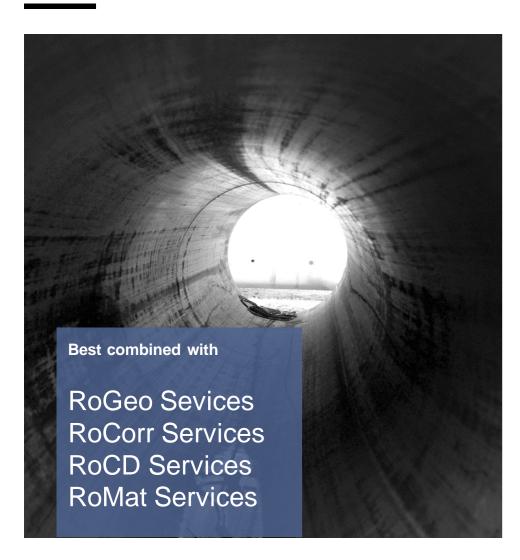
- Crack Assessment
- Crack Comparison
- Crack Management Framework

MATERIAL PROPERTY ASSESSMENTS

PIPELINE DNA UNCOVERED

Pipe grade is often uncertain. Yet operators require accurate material information in order to perform meaningful calculations.

Our Material Property Assessments involve:


- Review & alignment of existing pipeline information, pipe information (as built drawing, pipe books, mill certificates, hydro test pressure records, etc.)
- Utilization of existing pipeline inspection data and performance of analysis routines on ILI technologies
- Novel ILI technology utilizing ROSEN's unique recently developed Pipe Grade Sensors (PGS)

- MAOP Validation
- Pipe Grade Determination
- Outlier identification

FITNESS-FOR-SERVICE ASSESSMENTS

FUTURE-PROOF YOUR ASSET

Our Fitness-for-service (FFS) assessment tells you:

- Whether the immediate integrity of the pipeline is compromised
- When unacceptable defects could appear in the future

Our FFS Assessments involve:

- Comprehensive analysis of current and future integrity
- Clear program of repair, inspection and mitigation actions
- Full compliance to codes and regulations (e.g. API-579-1ASME FFS-1)

Service options – FFS assessment for:

- Metal loss defects
- Dents and wrinkles
- Freespans
- Bending strain
- Cracks