

Waste Energy Recovery in Natural Gas Pipelines

April 17, 2008
The INGAA Foundation
Spring Meeting
San Antonio, TX

Bruce Hedman ICF International, Inc.

Project Objective

- Identify the technical, market, and regulatory factors that go into the development of viable waste energy recovery projects
- Understand the key technical and economic factors that make the difference between a successful and unsuccessful heat recovery project.

Energy Recovery Options Evaluated

- Compressor Heat Recovery for Power Generation
- Turboexpanders
- Inlet Air Cooling

Approach

- Interview stakeholders
- Review current status
- Determine applicability
- Identify success factors

Stakeholders Interviewed

Developers/Suppliers

- Ormat Technologies
- Recycled Energy Development
- Ridgewood Renewable Power
- TAS
- Solar Turbines
- Caterpillar
- PRC International
- Turbine Inlet Air Cooling Association

Pipelines/Gas Industry

- Alliance
- CenterPoint
- Kinder Morgan
- NiSource
- Northern Natural Gas
- TransCanada
- Spectra Energy
- Williams
- Keyspan

Compressor Heat Recovery to Power

Compressor Heat Recovery to Power

- Six operating systems (TransCanada, Northern Border, Alliance)
- Ten planned or under construction (Alliance, Spectra Energy, Trailblazer, Northern Natural Gas)
- All utilize an organic rankine cycle (ORC) produced by Ormat Technologies
- Other developers/technologies evaluating market

Compressor Heat Recovery to Power

Ormat power unit on Northern Border Pipeline Compressor Station 7, North Dakota

Existing Business Model

- Existing systems on gas turbines only
- All developed by third party developers that own and operate the system
- Long term power purchase agreement with local utility or power wholesaler
- Power sales driven by "green credits"
- Pipelines paid for waste heat and land use

Existing Business Model

- Developer has long term sales contracts with utilities/wholesaler
 - 20 to 30 year contracts
 - Price in 3.5 to 5 cent/kWh range
 - Most cases in states with RPS/waste heat recovery credits
 - Generation based on heat "as available" may impact value of power
- Payment to pipeline based on kWh produced
 - Approximately 0.5 cents/kWh
 - Guaranteed minimum
 - 5 MW system = \$165,000/yr at 75% load factor
- Separate installation
 - Separate access
 - Developer owns/operates/maintains

Pipeline Experience

- Impact on compressor stations has been minimal
 - Only installation impact is bypass valve on existing stack
 - Recovery unit is separate
 - Minimal impact on site permits
 - noise guarantees met
 - modifications to air permits easily obtained and developer's responsibility (may require new dispersion modeling)
 - No discernable impact from increased back pressure

Margins Are Narrow for Heat Recovery Projects

Operating Cost to Generate: Heat Costs, \$/kWh Incremental O&M, \$/kWh Operating Costs to Generate Power, \$/kWh	\$0.0050 <u>\$0.0020</u> \$0.0070
Capital Cost Factor: Installed System Cost, \$/kW Load Factor, % Operating Hours Equipment Life, Yrs Cost of Capital, %	\$2,500 95% 8,322 20 8.0%
Capital Charge, \$/kWh Total Costs to Generate Power, \$/kWh	\$0.0306 \$0.0376

Economics Are Impacted by Capital Costs...

Economics Are Impacted by Capital Costs...

.....and by Load Factor

.....and by Load Factor

"Green Credit" Value has Driven Most Projects

- Alliance Power purchased by SaskPower under "Environmentally Preferred Power" program
- Northern Border Basin Electric Coop retains green credits
- Spectra Energy Long term PPA with BC Hydro as part of "Clean Energy Program"
- Trailblazer Generates Green Credits qualified under recent Colorado RPS
- RPS/Green Credits add \$0.005 to \$0.01/kWh (estimate)

What Could Jump Start this Market?

- Driver is not FERC pipeline regulation, but rather a wholesale power market that recognizes and rewards clean energy
 - Waste heat incentive in Energy Independence and Security Act (2007)
- Incentive for pipelines
 - Allow shareholders to retain heat revenues
- Set reasonable economic drivers and the market will develop cost-effective installations

INGAA Consensus Proposal: Minimum Thresholds for Posting Information

- Pipelines will identify on their EBB websites gas turbine compressor stations on their systems that:
 - Have a total gas turbine station capacity of at least 15,000 horsepower, and
 - Operate at more than 5,250 hours per year (60% load factor).

Compressor Heat Recovery to Power – Minimum Data Package

- Gas turbine makes and models (e.g., Solar Mars 100)
- Station longitude and latitude
- Servicing electric utility
- Line voltage before and after on-site station transformer
- Hourly operating profile over a 12 month period
 - New/planned stations will only be able to provide estimated capacity factor
 - For existing compression units, a pipeline cannot guarantee and will not warrant that the past 12 months of operating experience is indicative of future operating periods.

Compressor Heat Recovery to Power – Minimum Thresholds For Making Information Available

- Pipelines should have the option to develop waste heat recovery with a creditworthy waste heat developer, an affiliate, or by themselves.
- Pipelines are exempt from providing information for qualifying sites that already have operating waste heat recovery facilities or are in the process of being developed for waste heat recovery.
- Pipelines will provide this specific information to third-party waste heat developers (or an affiliate developer) upon request and subject to the developer signing a confidentiality agreement.
- Prior to entering any negotiations with a pipeline, a third-party developer may need to prove creditworthiness or supply a parent guarantee, provide evidence of appropriate insurance, and/or agree to indemnify the pipeline.

TurboExpanders – Generate Power from Pressure Drop at Transfer Stations

TurboExpanders

- Not entirely "free" power
 - Pressure reduction/energy output reduces gas temperature
 - Gas needs to be pre- or reheated to prevent liquid condensation
 - Typically results in a 2,000 to 5,000 Btu/kWh heat rate
- Turboexpanders are used extensively in gas processing, LNG and air separation plants
 - Steady flows and pressure ratios
 - Heating/cooling integrated into process

TurboExpanders – Past Use

Location	Application	Size, Hp, (kW)	Design Flow and Pressure Drop	Year Installed
San Diego, CA (SDG&E)	City Gate	365 (260)	11 MMCF/D (810 – 390 psia)	1983
Memphis, TN (Memphic Light)	Chemical Plant	600 (450)	15 MMCF/D (450 – 87 psia)	1983
Stockbridge, GA (Transco Pipeline)	Compressor Station	400 (300)	7 MMCF/D (555 – 85 psia)	1984
Hamilton, NJ (Starmark Energy)	City Gate	3,862 (2,800)	36 MMCF/D (635 – 70 psia)	1987

Current Potential for Pipeline use is Limited

- Very few "commercial" turboexpander units in use in North American pipeline system
 - Need large pressure drop for efficient operation
 - Affected by daily and seasonal flow and pressure variation
 - Economics impacted by cost of reheating or preheating gas
 - Custom engineering increases capital costs
- Pre-Commercial Demonstration Projects (Enbridge and Connecticut Gas)
 - Demos in Canada and United States
 - Coupled with fuel cell to provide gas heating
 - Supported with government RD&D funds

Enbridge/FuelCell Energy Concept

Ambient Temperature Affects Gas Turbine Power Output....

....and Heat Rate

Inlet Air Cooling

- Turbine Inlet Air Cooling regains power output lost with high ambient temperatures
 - Also regains some of the lost efficiency
- Two approaches
 - Evaporative
 - Chillers electrical or absorption
- Primarily used in power generation applications
 - Most greater than 40 MW
 - Driven by need for turbine capacity during hot weather

Inlet Air Cooling with Absorption Chillers

- Uses gas turbine exhaust to drive absorption chiller
- More power recovery than evaporative cooling
 - Can reduce inlet air to 50 F
- Highest capital cost option
 - HRSG
 - Absorption chiller
 - Cooling tower

Inlet Air Cooling with Absorption Chillers

- Summer power loss is not a critical issue for most pipeline gas turbine systems
- Use of absorption chillers does not improve energy efficiency
 - Recovers a portion of turbine heat rate loss due to temperature, but
 - Turbine heat rate improvements overcome by 0.25 to 0.28kW/RT parasitics for cooling tower and chiller

Conclusions

- Gas turbine heat recovery for power is viable in areas where power prices recognize clean energy benefits
 - 100 compressor stations in the U.S. meet minimum hurdles
- Turboexpander are not currently viable due to high costs, low power prices, and seasonal and daily variations in flow and pressure that impact output.
- There are no drivers for widespread use of absorption chillers for inlet air cooling
 - No capacity drive
 - No efficiency benefit

Questions?

